k- NN based Object Recognition System using Brain Computer Interface
نویسندگان
چکیده
منابع مشابه
Development of a Brain Computer Interface (BCI) Speller System Based on SSVEP Signals
BCI is one of the most intriguing technologies among other HCI systems, mostly because of its capability of recording brain activities. Spelling BCIs, which help paralyzed people to maintain communication, are one of the striking topics in the field of BCI. In this scientific a spelling BCI system with high transfer rate and accuracy that uses SSVEP signals is proposed.In addition, we suggested...
متن کاملA Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System
Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...
متن کاملControl of a 2-DoF robotic arm using a P300-based brain-computer interface
In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...
متن کاملWavelet Based Face Recognition using ROIs and k-NN
In this paper, human face recognition of still images has been proposed. The proposed system involves five steps: face detection by AdaBoost face detector, region of interest (ROI) extraction, feature extraction using discrete wavelet transform (DWT), dimensionality reduction by employing independent component analysis (ICA) and classification using k-Nearest Neighborhood (k-NN) classifier. Exp...
متن کاملEmotion Recognition Based on Brain-Computer Interface Systems
Emotions are intrinsically related to the way that individuals interact with each other as well as machines [1]. A human being can understand the emotional state of another human being and behave in the best manner to improve the communication in a certain situation. This is because emotions can be recognized through words, voice intonation, facial expressions and body language. In contrast, ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2015
ISSN: 0975-8887
DOI: 10.5120/21202-3878